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Abstract--Acoustic wave propagation in a monodisperse suspension of varying solids concentration was 
modeled exactly for wavelengths much larger than the particle size, including unsteady viscous effects, for 
the situation where particle interactions are predominantly inviscid. Inviscid particle interactions are 
addressed in terms of the added mass coefficient, which is sensitive to the solids concentration, the direction 
of insonification and the anisotropy of the particle arrangement. The sound speed and attenuation were 
calculated and compared to experimental results for a wide range of ka, where k is the wavenumber 
(=2n/2)  and a is the particle radius. The attenuation, which is a strong function of ka, is seen to have 
non-monotonic behavior with respect to the solids fraction at low frequencies and it becomes monotonic 
at high frequencies. In general, the effect of ka on sound speed is seen to be small in comparison. The 
comparison with experiments shows that at values of ka near I, effects associated with multiple scattering 
begin to affect acoustic propagation sufficiently to cause marked deviation between the present theory and 
measurements. 

Key Words: suspensions, acoustic wave propagation, sound speed, attenuation 

I N T R O D U C T I O N  

Longitudinal acoustic waves travel through a single-phase fluid with a velocity that depends on 
the fluid density and compressibility. In suspensions and slurries, on the other hand, the wave speed 
is known to be dependent on the material properties of the two constituents as well as their relative 
concentrations. A simple phenomenological model for the speed of sound in a two-phase mixture, 
first proposed by Urick (1974), describes the inhomogeneous mixture in terms of its averaged 
density and compressibility. This "effective medium" model fits the available experimental data 
for the sound speed in suspensions very well for low non-dimensional acoustic wavenumbers 
ka = 2hal2, where a is an average radius of the particles in the suspension. The attenuation of 
sound in two-phase solid-liquid mixtures is known to increase with increasing frequency, but the 
dependence of attenuation on the dispersed phase concentration is less well known. It has been 
found experimentally that the acoustic attenuation of high frequency sound in suspensions of small 
particles (corresponding to low values of ka) is non-monotonic with respect to the concentration of 
solids in suspension--there is a distinct maximum in attenuation at an intermediate concentration 
between the dilute limit and the fully packed state (Urick 1948; Hampton 1967). This has important 
implications in the development of non-intrusive ultrasonic diagnostic techniques for the study of 
concentrated sprays, slurries, pastes and fluidized beds, only to mention a few examples, which 
cannot readily be probed with existing optical methods. Few attempts have been made to explain 
this behavior (Gibson & Toks6z 1989; Harker & Temple 1988), and by their assumptions, these 
models are restricted to low ka. In addition, they employ empirically motivated forms for the 
effective viscosity of the suspension and, in the case of the former treatment, steady drag behavior 
is assumed. As an extension of this previous work we develop the governing equations for the 
acoustics of suspensions to describe the behavior of sound in the inertially dominated acoustic 
regime of considerably higher ka than that studied previously. 

There is a large body of literature on the propagation of acoustic waves in porous media, which 
has been motivated by seismological, oil exploration and oceanographical interests. However, 
acoustic wave propagation in porous media and suspensions, while similar, have important 
differences. For example, porous media exhibit elastic resistance to shear stresses (Biot 1956), while 
a suspension typically does not. Both, however, can sustain isotropic stresses. One of the difficulties 
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Table l. Particle and fluid properties 

Hampton (1967) Urick (1948) This study 

Experimental system Kaolin/water Kaolin/water Silica/water 
Frequency 100 kHz 1 MHz 100 kHz-I  MHz 
Particle radius 1.0 #m 0.5 #m 0.5 mm 
ka ~6.66 x l0 -5 ~3.35 × 10 -4 ~0.2 to 0.6 

is in the representation of the relative motion between fluid and solids. In porous media this is 
described in terms of a frequency-dependent permeability, which has recently received attention 
(Attenborough 1983; Johnson et al. 1987): with a pore size, d, as a characteristic geometric length 
scale, if the viscous boundary layer thickness, 6( = ~ c o ,  where # is the liquid viscosity, PL 
is its density and co is the angular frequency) is significantly greater than d, the permeability scales 
with viscosity and equals its steady flow value. On the other hand, if d >> ~ ,  the flow 
is essentially inviscid, is dominated by inertia and can be computed using potential theory. In the 
latter case, the dissipation is restricted to the thin boundary layer surrounding each particle. While 
similar scaling arguments can be made with suspensions, the analog of permeability is inherently 
coupled with the motion of the particles and cannot be described with linear elasticity. Below, the 
general solution of the Navier-Stokes equations to the problem of an oscillating sphere in a viscous 
fluid is generalized to accommodate oscillatory fluid motion, and it is included in the equations 
describing the acoustic behavior of a suspension. The sound speed and attenuation are then 
evaluated for the regime in which inertial effects dominate particle drag, and these predictions are 
then compared to experimental results. 

Measurement of  acoustic phase speed and attenuation 

Results of the acoustic phase speed in suspensions reported by Hampton (1967) and Urick (1947, 
1948) for ka ~ O(10 -5) and O ( 1 0 - 4 ) ,  respectively, bear out the utility of the phenomenological 
approach for small ka (see table 1). Here the wave speed c is given by 

c = , [1] 
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Figure I. The variations of sound speed in a suspension with particle concentration: O, ka ~- 6.6 x 10 -5 
(Hampton 1967); +, ka ~- 3.4 x ]0 -4 (Urick 1948). The data of Atkinson (1991) for/ca ~- 0.2 to 0.6 (*), 
show some scatter, but no minimum at intermediate solids fractions. The theoretical curves in ascending 

order are for ka values of 0, 6.66 x 10 -5, 3.4 x 10 -4 and 0.2-0.6. 
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where the effective bulk modulus of the system is given by 

and the suspension density is 

1 v (1 - -  v )  
+ - -  [2] 

/~ Ks /£L 

= vps + (1 - V)pL. [3] 

The variables x and p denote the bulk modulus and density of either the solid or the liquid 
according to the subscript s or L, respectively. For a system of silica particles in water, [1] predicts 
a minimum in sound speed at a solids fraction, v, of about 25-30%, and this prediction is borne 
out in the available experimental results at low ka. Results obtained by the present authors 
(figure 1), however, show differing behavior. For ka ~ 0 (1), there is no minimum at intermediate 
concentrations and the velocity increases monotonically with concentration. 

While the acoustic attenuation in concentrated suspensions is known to increase with frequency, 
the attenuations measured by Hampton (1967), Urick (1947, 1948) and the present authors 
show consistently non-monotonic behavior as a function of solids fraction or dispersed phase 
concentration, albeit for ka spanning 3-4 orders of magnitude (see, for example, figures 5, 6 and 8). 
By means of the analysis, it is later shown that the origin of the non-monotonic attenuation with 
respect to the solids fraction is different at high frequencies from that at low frequencies. We derive 
below a model to explain the respective behavior of attenuation and phase speed in suspensions 
for a wide range of frequencies up to ka ,~ 1. 

GOVERNING EQUATIONS 

A two-component model for a suspension of monodisperse spheres in a Newtonian liquid is 
developed, and by performing a linear perturbation analysis, we derive the expected infinitesimal 
compressional wave speed as well as the wave attenuation in the composite medium. 

The procedure for the formulation of the model is as follows: it is assumed that the solid particles 
as well as the liquid phase constitute a continuum. Once the two interacting continua assumption 
is made, a general continuity relation and a volume-averaged momentum balance for each of the 
two phases may be written. Thereafter, by invoking an equation of state for each phase, closure 
of the fluid dynamic equations is achieved. 

For a solids fraction v of the total volume, the liquid phase continuity equation is 

t~( l  - -  V)p L 

8t 
+ V[(l - V)pLVL] = O, [4] 

where VL is the liquid velocity. Similarly, the solid phase continuity equation takes the form 

~vps + V[vpsvs] = O, [5] 
~t 

where vs is the solids velocity. 
In developing the momentum conservation equations for high frequency acoustics in a 

concentrated mixture, it is helpful to evaluate the relative importance of viscous and inertial effects. 
It is shown below that inertial effects dominate the interface drag for the range of parameters of 
interest in the present study, i.e. large ka. For these the Reynolds number (Re) for oscillatory 
motion of a particle of radius a in a fluid of kinematic viscosity /~/PL, 

p / ~  o ) a  2 

Re=N/ 2# ' [61 

is very high and it is evident therefore that the flow is essentially inviscid, with the exception 
of thin viscous boundary layers surrounding the particles. It is to these thin boundary layers that 
the viscous dissipation in the system is restricted. While they are discussed specifically below, 
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the appropriate form of the one-dimensional momentum equations, neglecting gravitational effects, 
is: 

Ps V_ ~ -  4- V s g3X//---- FsL solids momentum [7] 

and 

(aOL aVL)= 0e 
PL (1 -- V) --fir + VL OX ,I ---~X + FL~ liquid momentum. [8] 

The quantity P is the liquid static pressure. For the conditions of interest, where the bulk of the 
fluid behaves in an inviscid manner, viscous dissipation can be neglected outside the particle 
boundary layers, hence the absence of a # V2VL term. In this analysis, we consider only viscous effects 
that arise due to interactions between the two phases. This effect appears in the momentum 
interaction term, FsL, which is the force per unit volume imparted by the liquid on the solid. It is 
equal and opposite to FL~. Its specific form is developed in the section below. 

Equations [4], [5], [7] and [8] represent 4 equations in 6 unknowns, VL, Vs, PL, P~, P and v. 
In order to achieve closure of this set of equations, two equations of state that relate the density 
variation of each of the two phases to the pressure perturbation, P', are invoked, namely 

and 

PL=PO 14- [9] 

The momentum interaction term FsL 

The momentum interaction force between the solid and the liquid, FsL = --FL, consists, in 
general, of dynamic drag (containing viscous and inertial effects) and buoyancy forces associated 
with the instantaneous liquid pressure gradient. In order to ascertain the momentum interaction 
force due to drag alone for a concentrated mixture, the single particle drag result must be extended 
to arbitrary concentrations of particles. Here, we develop a general extension of the exact solution 
for the unsteady motion of a single particle in a viscous fluid. To extend the single particle drag 
result to higher concentrations, we write the equivalent drag per unit volume, F~q, for the 
suspension to be equal to the drag per sphere (in an assembly of spheres) multiplied by the number 
of spheres per unit volume, n, o r  Feq = nFD, where n can be written in terms of the solids fraction 
and particle radius: 

3v 
n = 4rra 3 . [11] 

As was mentioned previously, there is also a component of the phase interaction force which is 
due to the instantaneous pressure gradients. This buoyancy force is included in the momentum 
interaction force between the phases in the following manner: 

FLs 3VFD dP [12] -4ha3 t-V0x, 

where FD is the unsteady force on a single sphere of radius a in an assembly of spheres executing 
oscillatory motion relative to the fluid. 

Drag on an isolated sphere 

The unsteady drag force on an isolated sphere, F~ ,  was derived by Landau & Lifshitz (1982): 

( a )  4-6) D(vs - vL) [13] Foo = 6n/~a 1 + ~ (vs - VL) + 3~a2pL(2a Dt ' 
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where 

D(v, - VL) 
Dt 

(or, &X /aoL 0v,  
[14] 

The specific form of this time derivative satisfies the condition of objectivity (Drew 1983). The 
parameter 6 ( = ~ )  is the unsteady viscous boundary layer thickness surrounding the 
particle. Its dimension relative to the separation between nearest neighbors provides a measure 
of the importance of viscous effects. At low frequencies, 6 is large, while the converse is true at 
high frequencies. For oscillatory, or harmonic, relative motion between the phrases, where 
U~j = v s -  vL = U0 e ~°'', the drag force is given by 

( PX/-~ i ~ c o  .ape 2 ~ / ~  Fm=6n#aU,~l l + a  ~/-~+ + t  2# XIpL~/coJ 

= 6n#a U,,t 1 + a ~ + ia ~ + i co 

( a,) =6rr/zaU,,t 1 + 6 + i ~ +  i 2 ~  . [15] 

This implies that for 6 >> a, or alternatively R <~ 1, the drag force reduces to the steady Stokesian 
drag, i.e. viscous forces dominate. On the other hand, for large co, or 6 <~ a, the steady drag term 
becomes negligible compared to the dissipative term associated with the unsteady generation of 
vorticity in the boundary layer near the particle surface and its diffusion away from the particle 
surface. This latter limit shows the dominance of inertial forces [as manifested in the added mass 
term i(2/9)(a2/62)] over viscous forces in the interphase drag. As will be seen later, it is the history 
force terms in the drag expression [the terms a/6 and i(a/6)] that contribute most significantly to 
the attenuation of acoustic waves in suspensions at high frequencies. 

To give an indication of the regime of validity of each of the terms in the equation above, for 
a 1 mm particle in water the crossover frequency at which the steady viscous drag term (i.e. the 
coo term) equals the transition terms (these contain 6- ' )  is 0.25 Hz. Correspondingly, the second 
crossover frequency at which the col term (the inertial term) starts to dominate the drag is about 
18 Hz. From this the following asymptotic behavior can be recognized. At very low co, the 
expression reduces to the well-known steady Stokes drag result, 

lim F m =  6rq~a(vs-  VL); [16] 
oJ~0 

and at high co, the dominant term is 

4ha 3 D(v~ - VL) 
lim~ F m =  ~pL 3 [ ) t  

4~a 3 D(vs - rE) 
= CpL 3 Dt ' [17] 

which can be recognized as the added mass term for the drag on an isolated sphere with an added 
mass coefficient, C of 1/2. So, clearly, for frequencies very much greater than the second crossover 
frequency (e.g. 1 kHz) it would seem appropriate to use the inertial asymptotic behavior of the drag 
law. However, while the drag becomes inertially dominated for high co, the dissipation associated 
with the particle and fluid oscillation remains viscous in origin but is restricted to a boundary layer 
surrounding each particle that becomes thinner with increasing frequency of oscillation. As is 
shown below, for the case of co > 100 kHz, the terms that contain viscosity as a parameter have 
little effect on the sound speed, but do significantly affect the attenuation. While viscous interactions 
can be negligible at such high frequencies, potential interactions are not. 
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For comparison, the present equations are shown below with the added mass coefficient, in the 
limit of inviscid flow: 

and 

D~v~ DLV L OP [18] 
Dt Los + C(V)pL] -- ~ [C(V)pL] = OX 

D r v t l  ( ~ _ v ) l  D~vs[ ( ~ _ v ) l  dP [19] 
Dt PL + C ( V ) p L  --  ~ C ( V ) p L  --  ~X " 

These are consistent with the generally accepted form due to Jackson (1985) with regards to the 
added mass coefficient and they have the same form as those proposed by Wallis (1989), although 
therein the added mass coefficient is presented in terms of the variable fl which is indicative of the 
quantity of fluid entrained by the moving solid. 

The added mass term and its dependence on concentration 

It has long been recognized that the added mass coefficient associated with each sphere in a 
suspension is a function of concentration as well as the geometrical configuration of the suspension. 
By analogy, this dependence is directly related to Maxwell's relation for the effective conductivity 
of such an assembly of non-conducting spheres in a conducting fluid. This analogy is appropriate 
as Laplace's equation governs both the electrical potential and potential flow. Maxwell (1881) 
obtained the following expression for fl, the ratio of the liquid conductivity to that of the mixture 
for a random assembly of non-conducting spheres: 

1 + - -  
2 

- [ 2 0 ]  fl 1 - v  

This equation has been shown to be a good approximation up to maximum packing concentrations 
of monodispersed spheres (Turner 1976). In the theory of inviscid multicomponent flows due to 
Wallis (1989), his equations of motion [(3.52) and (3.53)] lead to the following expression for the 
added mass coefficient: 

C(v) = ( ~ - - ~ ) [ ( 1 -  v)fl - 1], [21] 

where fl is a factor by which the flux of the fluid is reduced due to the presence of the particles. 
Using Maxwell's form of fl, the added mass coefficient reduces to a simple function of the solids 
fraction: 

which is used in FsL to account for potential interactions. This expression for the added mass 
assumes the correct value of 1/2 at zero concentration. It must be remembered here that this 
coefficient is very sensitive to the geometrical configuration (which explains the differences between 
existing models) and that this chosen representation is strictly valid for random distributions of 
monodisperse spheres. The general form of the unsteady drag in the absence of viscous interactions, 
and including inviscid interactions, thus takes the form 

( a )  [ ~ a l  D(vs - VL) [23] FD = 6n#a 1 + ~ (vs-- rE) + 47za3pL C(v) + Dt  

Limits o f  validity 

The condition where there are no viscous interactions between particles, while potential 
interactions may exist, is ubiquitous for high frequency ultrasonic applications with non-Brownian 
particles, and it requires that the viscous boundary layers (of thickness 6) surrounding adjacent 



A C O U S T I C  W A V E  SPE E D  A N D  A T F E N U A T I O N  IN S U S P E N S I O N S  5 8 3  

particles must not overlap. This is satisfied in the limit that 6 ,~ h/2, where h is the average inter- 
particle spacing, which is strongly concentration dependent. Now, from geometrical arguments, 
h is given by 

h 1 - t/1/3 
a r/i/3 , [24] 

where 

= - -  [25] Vmax 
and the maximum particle packing fraction Vm~x ----- 0.635 + 0.005 for a random close-packed 
structure of monodisperse spheres and Vm~ ~--0.555 for random loose packing (Onoda & Liniger 
1990). 

The requirement for no viscous interactions implies that the frequencies for which the present 
theory is valid are such that 

4___~__~ I ~/2/3 1 09 >> a2pL (1 --  r/l/3)2J " [26] 

This constraint is tantamount to neglecting the effects encountered in hindered viscous settling. 
The regime of 09 and v for which this restriction holds in a suspension of particles of radius 0.5 mm 
in water is shown in figure 2. 

A complete set of equations has now been developed, and their limits of validity have clearly 
been investigated. Continuity is imposed by [4] and [5], which, with the equations of state [9] and 
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Figure 2. Regime map to identify the presence or absence of viscous particle interactions in terms of 
frequency and dimensionless solids fractions (V/Vm~). For frequencies above this curve, the 0.5 mm 

particles (in water) may be considered to have non-overlapping viscous boundary layers. 
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[10], allow for the compressibility of  the materials. In the context of  the present long-wavelength 
theory, resonance effects in the solids are not relevant, and have for this reason been omitted from 
the discussion. Linear momentum is conserved by [7] and [8], which draw upon [12] and [23] for the 
form of the frequency- and concentration-dependent momentum interaction term. The generality 
and validity of this term over a vast range of  frequencies and solids fractions and its ability to 
capture both viscous and inviscid behavior for the stated range is the principal analytical 
contribution of  this theory in comparison with past efforts. Below, these equations are linearly 
perturbed, and traveling wave solutions are presented in terms of  phase speed and attenuation. 

L I N E A R I Z E D  E Q U A T I O N S  

We assume that the state variables VL, V,, P, v, PL and p, (denoted collectively by f = f 0  + f , )  
are perturbed from their steady state values by some small amount. The frequencies of  excitation 
of  the particles in the fluid due to the acoustic wave propagation are sufficiently high that the time 
scale of the duration of an individual wave or a series of  waves is very much smaller than the time 
scale for any other fluctuation in the flow. This implies that the motion of  the particle due to its 
oscillation in the sound wave may be completely decoupled from its gross motion in whatever flow 
situation is being considered, be it flow in a pipeline or in a fluidized bed. The time-averaged 
velocity of  the particles and the liquid may be taken to be zero, or 

v ° = u ° = 0. [27] 

Likewise, the datum pressure may be arbitrarily assumed to be zero or 

p0 = 0. [28] 

Our state variables thus reduce to 

U L U L 
p 

Us 
p, 

V I vO "1" V ~ + ' PL pO PL 
.p, pO+p; 

[29] 

The linearized perturbation equations are (to first order in the perturbed variables): 

8(1--  vO)p'L dpOv' a(1--vO)pOvL 
- - +  =0 ,  

dt dt dX 
[30] 

dv°P; ~ dv°P°V~ 
c~ t -I- -~ c3------~ = 0, [31] 

p O ( l _ v 0 ) ( d v [ ~ = _ ( l _ v 0 ) t 3 P '  9#v° /  a )  , 9v ° ( ~ t '  \ vt / -~x +-~Sra~[ 1 +~ (u'-v;)+-4-daP~C(v°)a +~] 

' ( a \  , , 9v° . 0 (~ t ,  d v~-'~ -°v°['ev:~- v°dP' 9#v° I+-~)(Vs--VL)--~aPL~gC(v)aq-6] t~t/l' P s ~t~t)---- ~X 2a 2 

and 

pop, 
p [ = - -  

~ L  

, pop, 
p s  ~ 

!¢ s 

t3t ,]' [32] 

[33] 

[34] 

[35] 
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D I S P E R S I O N  R E L A T I O N  

We seek wave-like solutions to these equations of  the form 

f ,  = fo  e~,,,, + kx), 

where 

[36] 

k =--c° + ict, [37] 
C 

c is the wave speed in the medium and a is the attenuation parameter. Substituting the perturbed 
variables into the full equations and neglecting terms higher than first order in the perturbation 
variables, we obtain the following matrix equation: 

t 
VL 

t 
/)s 
p,  

[M] v' =0 ,  [38] 

p~ 
.p~ 

where 

M= 

where 

- . 4  - iogB a + iog(B + po) ik 0 0 0 

[ - v° q i k (  1 -- v°~ A + i o 9 ~ _ B + y L ~ j j  - A - i m B  ~ vO j 0 0 0 

kp°(1 - v °) 0 0 _o9pO o9(1 - v °) 0 

0 kp°v  ° 0 cop ° 0 mv ° 

0 0 -P°--~L 0 1 0 
K L 

0 0 _pO 0 0 1 
Ks 

9 (a) 
A = ~ a  ~ 1 + 7  

and 

This implies that the column vector has a non-trivial solution iff 

det M = O; 

which in turn implies that 

where 

o~ ~ [(,,1 + io~s)p + io9p, pL(1 - v)] 
k s ~ _ ~ . ~  

A + iogB + ko(1 - v)p* 

p* = (1 - v)p, + vpL 

and e and # are defined by [2] and [3], respectively. The phase speed c is given by 

O9 
C ~ ~(k) 

[39] 

[40] 

[41] 

[42] 

[43] 

[~] 
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and the attenuation by 
ct (o9) = ~(k); [45] 

9t( ) and 3( ) denote the real and imaginary parts of the argument. 
The above equations can readily be used to compute the sound speed and attenuations for the 

full range of relevant frequencies. The square root prevents further algebraic simplification, 
although, for most applications it can easily be verified that within the assumptions already made, 
the real part of k will typically be much larger than its imaginary part by two or more orders of 
magnitude. If the condition 

I~(k)l ,~ 19t(k)l [46] 

applies, the real and imaginary parts of k can be written as 

9t(k) ~ ~ .  

Now 

o r  

~(k 2) = 291(k)~(k) 

~(k 2) 
Z(k) ~ 

- 2 ~ '  

and the real and imaginary parts of k 2 are given by 

o92 A20 + c02[B + (1 - v)o*][B ~ + p, pL(1 -- V)] 
9 t ( k  2) - _ 

X A 2 + ¢~2[B + (1 - -  V)p* ]  2 

and 

~2 Aco(I - v)(PsPL -- ~ p * )  3(k 2) = 
A2 + 02[B +(1 - v)p*] 2" 

[47] 

[48]  

[491 

[501 

[51] 

These equations are used below to present the asymptotic behavior of the sound speed and 
attenuation in the limits of co ---* m and co ---, 0. 

RESULTS 

Sound speed 

The computed sound speed is shown in figure 3 for a range of Re to demonstrate that it assumes 
constant values in the viscous and inviscid limits. This figure clearly shows the demarcation between 
the two regimes at Re ~ 100. The low frequency limit for the sound speed as predicted by the 
two-component model is given by 

lira c = [52] 

which is entirely independent of the frequency and material properties other than the fluid and 
solid densities and compressibilities. In the limit that ka --. 0, the sound speed as a function of ka 
reduces to that predicted by the phenomenological model of Urick (1947) (figure 1). In addition, 
the low frequency expression has the expected behavior for the high and low concentration limits: 
for v ~ 0, or pure fluid, the velocity tends to that of the single-phase fluid, 

C =(XL~ 1/2. [53] 
\ P L , ]  

The high frequency limit for the sound speed is given by 

lim c = [  ~--~Sr~- l_~? ] [541 
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Figure 3. Theoretical sound speed as a function of Re for silica particles in water at a concentration 
of 60%. For Re--, 0, the sound speed tends to the prediction of the phenomenological model of 
Urick (1947); and for Re >> 100, the sound speed asymptotes to a value somewhat greater than the speed 

in pure water. 

Note that the viscosity is absent from the sound speed at high frequencies and does not physically 
affect it. As was pointed out briefly earlier, the added mass coefficient C is not only concentration 
dependent, but it is also highly sensitive to orientation if the particle is anisotropic, as is the case 
with fibers. Therefore from [54], it is reasonable to expect orientation and isotropy to affect speed. 
However, closer scrutiny will reveal that both the numerator and the denominator are dependent 
on C to the first order and, as a result, the sound speed is relatively insensitive to local micro- 
structure. The phase velocity of a compressional wave in a suspension as defined by [42] and [44] 
is compared to the available data for a range of k a  in figure 1. For k a  ,,, O(1), the sound speed 
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profile can be seen to be somewhat different from the low frequency case, and does not show a 
minimum at intermediate concentrations, but rather increases monotonically with increasing solids 
fraction. The difference in the behavior of e across four orders of magnitude of ka  is not large, 
and the sound speed thus shows a relative insensitivity to frequency and all other factors except 
the fluid and particle densities and compressibilities. This is an important point in the context of 
on-going studies associated with the diagnosis of internal structure and anisotropy. The above 
results suggest that it may be difficult to infer anisotropy and internal structure from sound speed 
measurements alone, since the effect is of the order of the accuracy of typical measurements. 

At tenuat ion  

The attenuation predicted by [42] and [45], plotted in figure 4 as the continuous curve, exhibits 
a clear change in slope which separates the viscous and inviscid regimes. In the low frequency limit 
where viscous effects dominate, the attenuation is predicted to be 

a2¢o2 , (PsPL -- P * : )  
~01im ~ = ~  (1 - v) ~ , [55] 

and is found to be proportional to co 2. It should be noted here that as this expression is for the range 
of frequencies for which viscous particle interactions are significant, and as these are presented in 
the simpler form of isolated particles, the v dependence in the above equation is not expected to 
be correct. Unlike the form used for this regime, the Stokes drag and the Basset history terms are 
expected to generally be concentration dependent, as has been shown in numerous hindered viscous 
settling studies. The resulting attenuation is therefore inaccurate in magnitude. However, as the 
model contains all the appropriate physical ingredients, the quadratic frequency dependence is 
unaffected by the use of concentration-independent rather than concentration-dependent drag 
terms. 

It is interesting to observe that in the viscous regime, the attenuation of sound scales inversely 
with viscosity, which suggests that at low frequencies, good penetration can readily be achieved 
with pastes and other thick mixtures. 

There are few reported sets of data in the literature that show attenuation in suspensions. 
The data that are available for frequencies that straddle the viscous and the inviscid regimes show 
a distinct maximum at intermediate concentrations. See figure 5 [from Hampton (1967)] for 
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k a  ~- 6.66 x 10 -5 and figure 6 [from Urick (1948)] for k a  ~- 3.4 x 10 -4. This feature is clearly borne 
out  in the simulations. 

At  high frequencies the at tenuation is given by 

9 /~9~o (1 - v ) ( p s p L  - -  p * ~ )  
l i m  • = 4aa v - ' "  [~C + P s ~  - -  ~ C - ~ - ( 1  - v)] 3/2" 

[56] 

This leads to the result that  the at tenuation is propor t ional  to (/~c0) I/2, which is consistent with 
the Biot (1956) theory. As #- -*  0, the at tenuation tends to zero, which is to be expected as the 
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dissipation is purely viscous in nature, although it should be noted that the chief attenuation 
mechanism is not viscous forces arising from the steady or Stokesian drag, but viscous interactions 
due to the Basset or history terms that dominate drag losses at high frequencies of oscillation. 
Calculated attenuations for the high frequency regime are plotted in figure 7 for ka  ~- 0.5 to 1.0. 
These results have a distinct monotonic linear character, unlike their lower frequency counterparts. 
Experiments conducted by Atkinson (1991) to verify this (figure 8) exhibit attenuations that are 
an order of magnitude higher than the theory and that behave in a marked non-monotonic fashion 
similar to that found at intermediate frequencies. This data clearly illustrates the limits of the 
current theory. As ka ~ l, geometric and multiple scattering effects, which are unaccounted for 
in this theory become increasingly important. 

The attenuation has been shown to vary much more than the sound speed, not only between 
regimes but also within the viscous and inviscid regimes. This sensitive behavior is also observed 
as ka  begins to encroach upon the multiple scattering regime. At ka ~ O(1), the sound speed 
exhibits no discernible change while the attenuation is up to an order of  magnitude greater than 
the theoretical predictions of  the long-wavelength theory. This further emphasizes the value in 
conducting attenuation or signal amplitude measurements to obtain sensitive information regarding 
the microstructure of a mixture. 

DISCUSSION 

We have presented a theory of acoustic wave propagation in suspensions for a range of the 
non-dimensional wavenumber ka  of approx. 4 orders of magnitude, spanning both the viscous 
and inviscid regimes up to but not including multiple scattering regime. In comparisons with 
experiments, existing data show good agreement with this model. It was shown that the attenuation 
of  acoustic waves propagating in a suspension of  monodisperse spheres in a viscous fluid at high 
frequency is primarily due to the Basset or history effects associated with the oscillatory relative 
motion between the particles and the fluid. At low frequencies of  oscillation corresponding to large 
boundary layer thicknesses relative to the particle radius, the chief attenuation mechanism is steady 
or Stokesian drag on the particles. In contrast to the large observed variations in attenuation over 
the range of  frequencies considered, the effect of  frequency on the speed of  sound is small. 



ACOUSTIC WAVE SPEED AND ATTENUATION 1N SUSPENSIONS 591 

In the high frequency limit, the present theory predicts the attenuation to scale with (/uo) ~/2, 
which is consistent with the Biot (1956) theory. This power law has also been confirmed 
experimentally by Salin & Schfn (1981). 

At ka ~ 1, it has been found experimentally (Atkinson 1991) that the attenuation deviates from 
the 1/2 power law and assumes a higher power dependence with frequency (figure 4). This is 
probably due to multiple scattering effects which are known to dominate the attenuation behavior 
of suspensions at high frequencies (Allegra & Hawley 1971; Waterman & Truell 1961). Multiple 
scattering effects are also known to occur in porous media at kd ~ 1, where d is some representative 
pore size (Salin & Sch6n 1981). As a rule of thumb, the high ka data in figure 4 suggest that only 
for ka < 0.1 will the attenuation be relatively free of multiple scattering effects, although operation 
at higher frequencies is certainly possible with tolerable attenuation, to a point. It is further 
observed that in the inertial regime, while the theoretical attenuation becomes linearly proportional 
to concentration, the experiments for ka ~ O(1) were found to significantly deviate from this, 
exhibiting non-monotonic behavior and values of ~a much larger than predicted. This is suspected 
to be related to the same observed incipient multiple scattering effects. 

In summary, for all ka up to ~O(1) the primary attenuation mechanism for acoustic wave 
propagation in a particular suspension appears to be the viscous interactions due to steady drag 
and Basset or history forces between the oscillating fluid and the particles. At frequencies that 
correspond to viscous boundary layer thicknesses of the order of the particle diameter, the 
attenuation exhibits a distinct peak at intermediate concentrations, and proves to penetrate dense 
suspensions much better than dilute ones. This has encouraging practical consequences in the 
use of ultrasound with concentrated slurries. In the inertial regime, the peak in attenuation soon 
disappears upon a small increase in frequency, and gives way to a monotonic dependence upon 
concentration. In this regime, there is an increase in sensitivity to microstructure. This provides 
an avenue for implementation of acoustic methods for particle geometry and particle alignment 
diagnostics. As ka ~ 1, measured attenuation exhibit significant deviation from the theory and 
begin to grow prohibitively rapidly, resulting in progressively poorer penetration. This is the limit 
of the theory beyond which the long-wavelength assumption is no longer valid. 
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